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Fluid flows in the nanometer scale can be studied by molecular dynamics or Monte Carlo methods, but the
time and length scales are usually limited to rather short ranges due to the computational expense. Kinetic
theory is an alternative tool for studying nanoscale flows, but the existing models are rather complicated and
difficult to implement. In this paper, we propose a simple Enskog-like kinetic model for nanoscale flows. The
results predicted by this model compare well with molecular dynamics or Monte Carlo simulation results in the
literature.
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Understanding the behavior of fluid flows through nanos-ractive partV, [8]. In particular, ifV g, is approximated by
cale channels is not only of fundamental significance but alsa hard-sphere potential the dynamic equation for the one-
essential for the design of various nanodevices. In sucharticle distribution functiorf(r,£,t) can be written a§3,9]
small-scale systems, the continuum assumption may break ~
down, and hence the classical continuum hydrodynamieif + & Vif =MV Ve, Vi
theories will inevitably fail to wor1]. Moreover, on such a
small scale, the solid-fluid interaction will become so signifi- .
cant that the fluid properties may become strongly inhomo- =MV f N(rox(r,r) ViVaedry + Je, (1)
geneoud 2], and hence the conventional kinetic theory for
homogeneous fluids is also expected to fail. Under such shereV,is the external potentiaim is the molecular mass,
circumstance, atomic methods, such as the molecular dynany-is the pair-correlation functiofPCH, andJg is the Enskog
ics (MD) and Monte CarloMC) techniques, have become collision operator for hard-sphere flui@is0],
major tools for studying nanoscale fluid flows. However,
these_ a_tomic methods are usually computationally intensive J(f) = J [fO(r,r + ok, &, &) - fO(r,r — ok, £ &) dus.
and limited to phenomena over short time and length scales.

Therefore, developing more efficient and practical theory for (2)
fluid flows in the nanometer scale is still needed. ] o )

Although the conventional kinetic theory is inadequate inHere dﬂ1:?2®(g_'k)(9'k)dkd§1 is the collision spacey is
studying fluid flows in the nanometer scale, it may serve as e effective diameter of the moleculeg=§,-§, k
starting point to develop more sophisticated theories. Indeed (r =r1)/|r—ra|, & =&+(g-k)k and§;=£,-(g-k)k, and® is
a few efforts have been made to extend kinetic theory tdhe Heaviside step function. In the Enskog theory, the two-
nanoscale flows over the past two decafl@s5]. Unlike particle distribution function is approximated by the single-
other statistic-mechanical approaches, such as the sum-rubgrticle distribution function asf®(r,ry,&,&)=x"(n(r
theory, the density-functional theofpFT), and the integral  +r1)/2)f(r,£)f(r,,&), where " is the PCF for homoge-
equation theory6], these modified kinetic approaches can beneous hard-sphere fluids.
used not only to study the equilibrium properties of nanos- Equation(1) has been introduced intuitively by Davet
cale fluids, but also the transport behavior of nanoscal@l. as a base for their theory for nanoscale flg®&k Never-
flows. In fact, some simple planar flows have been studiedheless, the complicated collision operator makes the theory
via the kinetic approaci5,7]. These applications demon- quite difficult in practical applications. Therefore, before pre-
strate the potential of the kinetic approach in the study ofceding to present our kinetic model for nanoscale flows, we
nanoscale fluid flows. However, the mentioned models aréirst make some bold simplifications to make Ed) more
rather complicated and their applications to general nanospractical while retaining its essential features. To this end, we
cale flows are difficult and computationally expensive. Indecompose the collision operatdg as Je(f)=Jg(f)+JI2(f)
this paper, we propose a simple and practical kinetic modealising the Taylor expansiofiL0] or projection[11] method,
for nanoscale fluid flows, and derive the mass and momenwhereJs is the Boltzmann collision part anti, is the excess
tum conservation equations. part. Jg is then approximated by a Bhatnagar-Gross-Krook

We consider a fluid composed of classical structureles$BGK)-like model[11], Jg(f)=—-N"Yf-f€9], where\ is a
sphere molecules that interact with a pairwise intermoleculavelocity-independent relaxation time, aff@®=n¢, is the lo-
potential V(r). Usually V(r) can be separated into a short- cal equilibrium distribution function, with

range strong repulsive pavt, and a long-range weak at- 32
¢:( - ) XY~ (£~ )2 3
! 2’7TkBT 2kBT '
*Corresponding author: metzhao@ust.hk For anisothermalhomogeneous fluid)%, can be approxi-
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mated as[10] J2=-nVox"(n)f€I(&-u)- VIn[n>"(n)T]
+R, whereV,=270>/3. The termR has no contributions to
the mass and momentum, and therefore we can #rdfwm  geneous fluid\ can be modeled as(r)=u(n)/nksT, such
J%, to obtain I,=-V,f€¥(&-u)-[2Ax"(n)+Bn], where thatu(r)=u(n(r)). To complete the approximation, we need
A=Vn and B=V y. Another simplification is made on the a formula for u. Here we use the Enskog expression for
attractive part of the potential. It has been demonstrated thatard-sphere fluids given if10], w(n)=puonVo(y 1+0.8
the PCFy is approximately unity in the attractive ranf2],  +0.7614y), wherey=nVyx"{(n).
and so [n(ry)x(r,ri;nV,Vedr; =V, Vy,,  where Vp(r) OnceJe, and A are determined, we can obtain a simple
=/n(ry)Vau(r,rydry. With these simplifications, we now ob- kinetic model for nanoscale fluid flows as follows:
tain a simplified kinetic model for isothermal homogeneous _ _
fluids, O + £V F =TV (Vo Vi) - Vf = = N7 = 9]+ 3,

(6)

af + &V, F =MV, (Ve + Vi) - Vo = = N7 F = 197+ 32
(4) A Chapman-Enskog analysis of the above equation leads to
the following equations for conservative variables:
We use Eq(4) as the starting point of our kinetic model

other hand, it is known that for a homogeneous flpids
related to\ by u(n)=AnkgT [11]. Therefore, for an inhomo-

for nanoscale flows. Two problems should be addressed in g(mn)+ V- (mnu) =0, (78)
order to account for the inhomogeneity in nanoscale fluids.

The first problem to be addressed is on the extensid,ab d(mnu) + V- (mnuu) +kgTV n+nV Vet Vi)
account for the inhomogeneity. It is clear that any suitable _y '(M(ﬁ)ﬂ) N nkBT[ZKXh o) +§ﬁ_|Vo- (7b)

extension of)%,, sayJe, should reduce td2, in the homo-

geneous limit. Our extension is where Vu=[Vu+(Vu)T]. It is noted that for homogeneous

fluid flows, A and B reduce toA and B, respectively, and
Egs. (78 and (7b) reduce to the usual Navier-Stokes equa-
tions derived from the Enskog theory for dense homoge-
neous fluid[10]. This means that these equations are appli-
cable to both nanoscale and macroscale fluid flows.

We now apply the proposed kinetic model to study the
equilibrium properties of a fluid confined in a planar nano-
sized slit pore, where the external potential arises from the
solid wall located atx=0 andx=H. In such a system, the
gnhomogeneity only appears i direction. At equilibrium
with u=0, Eq. (7b) reduces to a Yvon-Born-GrediYBG)-

Jex= = Vof ®¥(£ - u) - [2Ax"(n) + BN, (5
where  A(r)=D"Yf ||« ror N(r+r")dr’ and B(r)
=D < orat " X"(N(r +r"))dr’, with D=7¢5/120. It can be
readily shown that, for homogeneous fluids, does reduce
to ng The proposed expression fdg, is inspired by the
free-energy DFT for inhomogeneous fluids. It is known that
the Helmholz free energy for an inhomogeneous fluid],

F, can be expressed aB= 2+ FoXiy Fidy 7o where the
four terms on the right-hand side correspond to the term
Vat Vexs Js, andJ2, in Eq. (4) for homogeneous fluids. Ac-

cording to the DFT,F** for inhomogeneous fluids can be like equation,
modeled asF®*=n, Fy[n,]dr, wheren, and n, are some d Vot V _ _
weighted densities, and[n] is the excess free energy per g\ nn+ e)l(<BT T =[2A0MM) +BAlV,, ()

molecule of a homogeneous hard-sphere fluid of density

n. Motivated by this idea, we appropriatd.(n) as Wwhich can be solved numerically to obtain the equilibrium
3o T = Va(€-0) AT <BT)). By (6D Stibuton e st vt he exeral ang
taking na=n andn,=n, we obtain the extendedt, as given As a first application, we calculate the density distribution

by Eq.(5). . . :
It is worth noting that inJ,, defined by Eq(5), the PCF is of a hard-sphere fluid confined between two hard walls. This

approximated byy=x"Y(n)). This approximation is consis-
tent with the model introduced by Fischer and Methfessel
[14]. They assumed that the unknown PCF in an inhomoge-
neous fluid can be estimated from a homogeneous fluid PCF,
but it is evaluated at a local average densitipstead of the
local densityn. It has been shown that the FM model could
give fairly accurate predictioni], given thatn and x" are
specified properly. The Tarazona average metla8|
coupled with the Carnahan-Starling hard-sphere POH
has been shown to be a good choice to spatdnd y"s[13],
and we will use this choice in our model.

The second problem to be addressed is how to determine
the relaxation timex. Our strategy is based on the local
average density mod€LADM ) [17], in which the shear vis-

8

3
n,o =0.81

o Monte Carlo
— Present

cosity u for a nanoscale fluid is modeled by that of a homo-
geneous fluid with a weighted density, i.g.7u(n). On the

FIG. 1. The density distribution of a hard-sphere fluid confined
between two hard walls with a separation of 10:94
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FIG. 2. The density distribu-
. t tion of a Lennard-Jones fluid con-
% fined between two 10-4-3 walls
2 3 4
@) X/ (ew=€). MD results are taken

from [19]. ForH/o=3 and 4, the
bulk density n,=0.5925%2 and
temperatureT=1.2¢/kg; for H/o
=11.57, n,=0.67"2 and T
=0.97%/Kg.

problem has been used as a benchmark to test theories fiorthe MD simulations. The density profiles at different pore
inhomogeneous fluidsl3]. The number density is compared sizes are presented in Fig. 2 and compared with the MD
with the MC resulf18] in Fig. 1, with a pore-averaged den- results[19]. Again, good agreement is achieved. In particu-
sity nOEH‘lfg'n(x)dx:O.Sla‘3. It is seen that the density lar, the kinetic model captures the critical change in the fluid
oscillation in the pore is in quantitative agreement with thestructure: a third peak in the central region appearsias
MC result, which demonstrates the capability of the presenthanges from & to 40. As H reaches 11.57, three pro-
model in predicting the structure induced by the excludechounced peaks with decaying magnitudes in the vicinity of
volume effect in a nanoscale fluid. each wall are observed, and the fluctuation of the density in
To further demonstrate the capability of the presenthe core region is rather weak. These results indicate that the
model, we apply it to study the equilibrium properties of aproposed kinetic model is also applicable to studying the
Lennard-Jone$LJ) fluid confined between two walls with a equilibrium properties of more realistic nanofluids than hard-
10-4-3 potential[19], V,,(r)=1.6m¢,[0.4210-7-73/2.121  sphere fluids.
+0.4%)], where z=¢/r. In our computations, the pore- We also applied the proposed model to predict the dy-
averaged density is taken approximately to be what was usgtemic behavior of a LJ fluid flowing in a narrow pore. As an
example, we present here the results of the planar Couette

8 —51 flow. The two confining wall exert a 10-4 potentigimilar
0.7
L
6 < 0.5
o 4
o« '1
L4 , o 2

-0.5

FIG. 3. Density and velocity distributions of the planar Couette
flow in a pore of width H=5.384r. Pore-average density,
=0.6923; temperatureT=1.1e/kg, wall potential energye,,=4e.

Solid and dashed lines: density and velocity predicted by the FIG. 4. Velocity distributions against the wall potential for the
present kinetic model. Symbols: the MD results in R&f7]. same system as in Fig. 3.
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to the 10-4-3 potential, except without the last term of ordempotential, and the weaker the potential, the larger the slip. A
3) [17]. At steady state, the density and velocity distributionssimilar phenomenon was also reported in MD simulations
can be obtained by solving E(). In Fig. 3, the density and [5 20
Itis observed that the results predicted by the present kinetig,oqe| for fluid flows in the nanometer scale. The introduc-
model agree well with the MD simulation resu[ts7]. The tion of a BGK-like approximation enables the present model
effective viscosity and shear stress predicted are 0.6623 a . s

0 be much simpler than the other existing models. The good

0.1230, respectively, which are in excellent agreement wit . :
the MD results, 0.65+0.02 and 0.121+0.003]. It is also quantitative agreement between the present model predic-

evident that, unlike the linear velocity distribution in conven- tions and MD as well as MC simulations, which usually
tional Couette flows, the velocity profile in the narrow pore consume tremendous computational time, demonstrates that

deviates greatly from linearity. This derivation is due to thethis model is a promising tool for studying nanoscale fluid
inhomogeneous nature of the nanoscale fluid flow, induceflows. We also believe that the present model can be ex-
by the wall-fluid interactions. Therefore, it is not surprising tended to allow more complex nanoscale flows to be studied
that the strength of the wall potential has a significant influ-by including other intermolecular interactions, e.g., electro-
ence on the velocity distribution. As shown in Fig. 4, under astatic interactions.

strong wall-fluid interaction, a layer of fluid atoms is ab-

sorbed on the wall and moves with the wall. On the other The support from a RGC grant of Hong Ko@rant No.
hand, an obvious velocity slip is observed for a weak wallHKUST6197/03R is gratefully acknowledged.
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