
Simple kinetic model for fluid flows in the nanometer scale

Zhaoli Guo, T. S. Zhao,* and Yong Shi
Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong

sReceived 27 May 2004; revised manuscript received 16 December 2004; published 11 March 2005d

Fluid flows in the nanometer scale can be studied by molecular dynamics or Monte Carlo methods, but the
time and length scales are usually limited to rather short ranges due to the computational expense. Kinetic
theory is an alternative tool for studying nanoscale flows, but the existing models are rather complicated and
difficult to implement. In this paper, we propose a simple Enskog-like kinetic model for nanoscale flows. The
results predicted by this model compare well with molecular dynamics or Monte Carlo simulation results in the
literature.
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Understanding the behavior of fluid flows through nanos-
cale channels is not only of fundamental significance but also
essential for the design of various nanodevices. In such
small-scale systems, the continuum assumption may break
down, and hence the classical continuum hydrodynamic
theories will inevitably fail to workf1g. Moreover, on such a
small scale, the solid-fluid interaction will become so signifi-
cant that the fluid properties may become strongly inhomo-
geneousf2g, and hence the conventional kinetic theory for
homogeneous fluids is also expected to fail. Under such a
circumstance, atomic methods, such as the molecular dynam-
ics sMDd and Monte CarlosMCd techniques, have become
major tools for studying nanoscale fluid flows. However,
these atomic methods are usually computationally intensive
and limited to phenomena over short time and length scales.
Therefore, developing more efficient and practical theory for
fluid flows in the nanometer scale is still needed.

Although the conventional kinetic theory is inadequate in
studying fluid flows in the nanometer scale, it may serve as a
starting point to develop more sophisticated theories. Indeed,
a few efforts have been made to extend kinetic theory to
nanoscale flows over the past two decadesf3–5g. Unlike
other statistic-mechanical approaches, such as the sum-rule
theory, the density-functional theorysDFTd, and the integral
equation theoryf6g, these modified kinetic approaches can be
used not only to study the equilibrium properties of nanos-
cale fluids, but also the transport behavior of nanoscale
flows. In fact, some simple planar flows have been studied
via the kinetic approachf5,7g. These applications demon-
strate the potential of the kinetic approach in the study of
nanoscale fluid flows. However, the mentioned models are
rather complicated and their applications to general nanos-
cale flows are difficult and computationally expensive. In
this paper, we propose a simple and practical kinetic model
for nanoscale fluid flows, and derive the mass and momen-
tum conservation equations.

We consider a fluid composed of classical structureless
sphere molecules that interact with a pairwise intermolecular
potential Vsrd. Usually Vsrd can be separated into a short-
range strong repulsive partVrep and a long-range weak at-

tractive partVatt f8g. In particular, ifVrep is approximated by
a hard-sphere potential the dynamic equation for the one-
particle distribution functionfsr ,j ,td can be written asf3,9g

]t f + j · =r f − m−1=rVext· =jf

=m−1=jf ·E nsr1dxsr,r1d=rVattdr1 + JE, s1d

whereVext is the external potential,m is the molecular mass,
x is the pair-correlation functionsPCFd, andJE is the Enskog
collision operator for hard-sphere fluidsf10g,

JEsfd ; E ff s2dsr,r + sk,j8,j18d − f s2dsr,r − sk,j,j1dgdm1.

s2d

Heredm1=s2Qsg·kdsg·kddkdj1 is the collision space,s is
the effective diameter of the molecules,g=j1−j, k
=sr −r1d / ur −r1u, j8=j+sg·kdk andj18=j1−sg·kdk, andQ is
the Heaviside step function. In the Enskog theory, the two-
particle distribution function is approximated by the single-
particle distribution function asf s2dsr ,r1,j ,j1d=xhs(nsr
+r1d /2)fsr ,jdfsr1,j1d, where xhs is the PCF for homoge-
neous hard-sphere fluids.

Equations1d has been introduced intuitively by Daviset
al. as a base for their theory for nanoscale flowsf3g. Never-
theless, the complicated collision operator makes the theory
quite difficult in practical applications. Therefore, before pre-
ceding to present our kinetic model for nanoscale flows, we
first make some bold simplifications to make Eq.s1d more
practical while retaining its essential features. To this end, we
decompose the collision operatorJE as JEsfd=JBsfd+Jex

0 sfd
using the Taylor expansionf10g or projectionf11g method,
whereJB is the Boltzmann collision part andJex

0 is the excess
part. JB is then approximated by a Bhatnagar-Gross-Krook
sBGKd-like model f11g, JBsfd=−l−1ff − f seqdg, wherel is a
velocity-independent relaxation time, andf seqd=nfl is the lo-
cal equilibrium distribution function, with

fl = S m

2pkBT
D3/2

expF−
m

2kBT
sj − ud2G . s3d

For an isothermalhomogeneous fluid,Jex
0 can be approxi-*Corresponding author: metzhao@ust.hk
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mated as f10g Jex
0 =−nV0xhssndf seqdsj−ud ·= lnfn2xhssndTg

+R, whereV0=2ps3/3. The termR has no contributions to
the mass and momentum, and therefore we can dropR from
Jex

0 to obtain Jex
0 =−V0f seqdsj−ud ·f2Axhssnd+Bng, where

A= =n and B= =x. Another simplification is made on the
attractive part of the potential. It has been demonstrated that
the PCFx is approximately unity in the attractive rangef12g,
and so ensr1dxsr ,r1;nd=rVattdr1<=rVm, where Vmsrd
=ensr1dVattsr ,r1ddr1. With these simplifications, we now ob-
tain a simplified kinetic model for isothermal homogeneous
fluids,

]t f + j · =r f − m−1=rsVext+ Vmd · =jf = − l−1ff − f seqdg + Jex
0 .

s4d

We use Eq.s4d as the starting point of our kinetic model
for nanoscale flows. Two problems should be addressed in
order to account for the inhomogeneity in nanoscale fluids.
The first problem to be addressed is on the extension ofJex

0 to
account for the inhomogeneity. It is clear that any suitable
extension ofJex

0 , sayJex, should reduce toJex
0 in the homo-

geneous limit. Our extension is

Jex= − V0f seqdsj − ud · f2Āxhssn̄d + B̄n̄g, s5d

where Āsrd=D−1eur8u,s/2r8n̄sr +r8ddr8 and B̄srd
=D−1eur8u,s/2r8x

hs(n̄sr +r8d)dr8, with D=ps5/120. It can be
readily shown that, for homogeneous fluids,Jex does reduce
to Jex

0 . The proposed expression forJex is inspired by the
free-energy DFT for inhomogeneous fluids. It is known that
the Helmholz free energy for an inhomogeneous fluidf13g,
F, can be expressed asF=Fatt+Fext+Fid+Fex, where the
four terms on the right-hand side correspond to the terms
Vatt, Vext, JB, andJex

0 in Eq. s4d for homogeneous fluids. Ac-
cording to the DFT,Fex for inhomogeneous fluids can be
modeled asFex=en̄aF0fn̄bgdr, where n̄a and n̄b are some
weighted densities, andF0fng is the excess free energy per
molecule of a homogeneous hard-sphere fluid of density
n. Motivated by this idea, we appropriateJexsnd as

Jex=Jex
0 sn̄a,n̄bd=−V0n̄aflsj−ud ·f2Āsn̄bdxhssn̄bd+B̄sn̄bdg. By

taking n̄a=n and n̄b= n̄, we obtain the extendedJex as given
by Eq. s5d.

It is worth noting that inJex defined by Eq.s5d, the PCF is
approximated byx=xhs(sn̄d). This approximation is consis-
tent with the model introduced by Fischer and Methfessel
f14g. They assumed that the unknown PCF in an inhomoge-
neous fluid can be estimated from a homogeneous fluid PCF,
but it is evaluated at a local average densityn̄ instead of the
local densityn. It has been shown that the FM model could
give fairly accurate predictionsf3g, given thatn̄ andxhs are
specified properly. The Tarazona average methodf15g
coupled with the Carnahan-Starling hard-sphere PCFf16g
has been shown to be a good choice to specifyn̄ andxhs f13g,
and we will use this choice in our model.

The second problem to be addressed is how to determine
the relaxation timel. Our strategy is based on the local
average density modelsLADM d f17g, in which the shear vis-
cosity m for a nanoscale fluid is modeled by that of a homo-
geneous fluid with a weighted density, i.e.,m=msn̄d. On the

other hand, it is known that for a homogeneous fluidm is
related tol by msnd=lnkBT f11g. Therefore, for an inhomo-
geneous fluidl can be modeled aslsrd=msn̄d /nkBT, such
that msrd=m(n̄srd). To complete the approximation, we need
a formula for m. Here we use the Enskog expression for
hard-sphere fluids given inf10g, msnd=m0nV0sy−1+0.8
+0.7614yd, wherey=nV0xhssnd.

OnceJex and l are determined, we can obtain a simple
kinetic model for nanoscale fluid flows as follows:

]t f + j · =r f − m−1=rsVext+ Vmd · =jf = − l−1ff − f seqdg + Jex.

s6d

A Chapman-Enskog analysis of the above equation leads to
the following equations for conservative variables:

]tsmnd + = · smnud = 0, s7ad

]tsmnud + ¹ · smnuud + kBT = n + n = sVext+ Vmd

= = · „msn̄d=u… + nkBTf2Āxhssn̄d + B̄n̄gV0. s7bd

where =u=f=u+s=udTg. It is noted that for homogeneous

fluid flows, Ā and B̄ reduce toA and B, respectively, and
Eqs. s7ad and s7bd reduce to the usual Navier-Stokes equa-
tions derived from the Enskog theory for dense homoge-
neous fluidf10g. This means that these equations are appli-
cable to both nanoscale and macroscale fluid flows.

We now apply the proposed kinetic model to study the
equilibrium properties of a fluid confined in a planar nano-
sized slit pore, where the external potential arises from the
solid wall located atx=0 andx=H. In such a system, the
inhomogeneity only appears inx direction. At equilibrium
with u=0, Eq. s7bd reduces to a Yvon-Born-GreensYBGd-
like equation,

d

dx
Sln n +

Vext+ Vm

kBT
D = f2Āxx

hssn̄d + B̄xn̄gV0, s8d

which can be solved numerically to obtain the equilibrium
density distribution in the slit, provided that the external and
the intermolecular potentials are given.

As a first application, we calculate the density distribution
of a hard-sphere fluid confined between two hard walls. This

FIG. 1. The density distribution of a hard-sphere fluid confined
between two hard walls with a separation of 10.94s.
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problem has been used as a benchmark to test theories for
inhomogeneous fluidsf13g. The number density is compared
with the MC resultf18g in Fig. 1, with a pore-averaged den-
sity n0;H−1e0

Hnsxddx=0.81s−3. It is seen that the density
oscillation in the pore is in quantitative agreement with the
MC result, which demonstrates the capability of the present
model in predicting the structure induced by the excluded
volume effect in a nanoscale fluid.

To further demonstrate the capability of the present
model, we apply it to study the equilibrium properties of a
Lennard-JonessLJd fluid confined between two walls with a
10-4-3 potentialf19g, Vwsrd=1.6pewf0.4z10−z4−z3/2.12s1
+0.43zdg, where z=s / r. In our computations, the pore-
averaged density is taken approximately to be what was used

in the MD simulations. The density profiles at different pore
sizes are presented in Fig. 2 and compared with the MD
resultsf19g. Again, good agreement is achieved. In particu-
lar, the kinetic model captures the critical change in the fluid
structure: a third peak in the central region appears asH
changes from 3s to 4s. As H reaches 11.57, three pro-
nounced peaks with decaying magnitudes in the vicinity of
each wall are observed, and the fluctuation of the density in
the core region is rather weak. These results indicate that the
proposed kinetic model is also applicable to studying the
equilibrium properties of more realistic nanofluids than hard-
sphere fluids.

We also applied the proposed model to predict the dy-
namic behavior of a LJ fluid flowing in a narrow pore. As an
example, we present here the results of the planar Couette
flow. The two confining wall exert a 10-4 potentialssimilar

FIG. 3. Density and velocity distributions of the planar Couette
flow in a pore of width H=5.384s. Pore-average densityn0

=0.692s−3; temperatureT=1.1e /kB, wall potential energyew=4e.
Solid and dashed lines: density and velocity predicted by the
present kinetic model. Symbols: the MD results in Ref.f17g.

FIG. 4. Velocity distributions against the wall potential for the
same system as in Fig. 3.

FIG. 2. The density distribu-
tion of a Lennard-Jones fluid con-
fined between two 10-4-3 walls
sew=ed. MD results are taken
from f19g. For H /s=3 and 4, the
bulk density nb=0.5925s−3 and
temperatureT=1.2e /kB; for H /s
=11.57, nb=0.67s−3 and T
=0.972e /kB.

SIMPLE KINETIC MODEL FOR FLUID FLOWS IN THE… PHYSICAL REVIEW E 71, 035301sRd s2005d

RAPID COMMUNICATIONS

035301-3



to the 10-4-3 potential, except without the last term of order
3d f17g. At steady state, the density and velocity distributions
can be obtained by solving Eq.s7d. In Fig. 3, the density and
velocity distributions of one of the simulations are presented.
It is observed that the results predicted by the present kinetic
model agree well with the MD simulation resultsf17g. The
effective viscosity and shear stress predicted are 0.6623 and
0.1230, respectively, which are in excellent agreement with
the MD results, 0.65±0.02 and 0.121±0.003f17g. It is also
evident that, unlike the linear velocity distribution in conven-
tional Couette flows, the velocity profile in the narrow pore
deviates greatly from linearity. This derivation is due to the
inhomogeneous nature of the nanoscale fluid flow, induced
by the wall-fluid interactions. Therefore, it is not surprising
that the strength of the wall potential has a significant influ-
ence on the velocity distribution. As shown in Fig. 4, under a
strong wall-fluid interaction, a layer of fluid atoms is ab-
sorbed on the wall and moves with the wall. On the other
hand, an obvious velocity slip is observed for a weak wall

potential, and the weaker the potential, the larger the slip. A
similar phenomenon was also reported in MD simulations
f5,20g.

In summary, we have derived an Enskog-like kinetic
model for fluid flows in the nanometer scale. The introduc-
tion of a BGK-like approximation enables the present model
to be much simpler than the other existing models. The good
quantitative agreement between the present model predic-
tions and MD as well as MC simulations, which usually
consume tremendous computational time, demonstrates that
this model is a promising tool for studying nanoscale fluid
flows. We also believe that the present model can be ex-
tended to allow more complex nanoscale flows to be studied
by including other intermolecular interactions, e.g., electro-
static interactions.
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